Automatic initial/final generation for dialectal Chinese speech recognition

نویسندگان

  • Linquan Liu
  • Thomas Fang Zheng
  • Wenhu Wu
چکیده

Phonetic differences always exist between any Chinese dialect and standard Chinese (Putonghua). In this paper, a method, named automatic dialect-specific Initial/Final (IF) generation, is proposed to deal with the issue of phonemic difference which can automatically produce the dialect-specific units based on model distance measure. A dialect-specific decision tree regrowing method is also proposed to cope with the tri-IF expansion due to the introduction of dialect-specific IFs (DIFs). In combination with a certain adaptation technique, the proposed methods can achieve a syllable error rate (SER) reduction of 18.5% for Shanghai-accented Chinese compared with the Putonghua-based baseline while the use of the DIF set only can lead to an SER reduction of 5.5%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using a small development set to build a robust dialectal Chinese speech recognizer

To make full use of a small development data set to build a robust dialectal Chinese speech recognizer from a standard Chinese speech recognizer (based on Chinese Initial/Final, IF), a novel, simple but effective acoustic modeling method, named state-dependent phoneme-based model merging (SDPBMM), is proposed and evaluated, where a shared-state of standard tri-IF is merged with a state of diale...

متن کامل

State-Dependent Phoneme-Based Model Merging for Dialectal Chinese Speech Recognition

Aiming at building a dialectal Chinese speech recognizer from a standard Chinese speech recognizer with a small amount of dialectal Chinese speech, a novel, simple but effective acoustic modeling method, named statedependent phoneme-based model merging (SDPBMM) method, is proposed and evaluated, where a tied-state of standard triphone(s) will be merged with a state of the dialectal monophone th...

متن کامل

Cross-Dialectal Data Transferring for Gaussian Mixture Model Training in Arabic Speech Recognition

Dialectal Arabic speech recognition is a difficult problem and is relatively less studied. In this paper, we propose a cross-dialectal Gaussian mixture model training criteria to transfer knowledge from one domain to the other by data sharing. Specifically, phone classification experiments on West Point Modern Standard Arabic Speech corpus and Babylon Levantine Arabic Speech corpus demonstrate ...

متن کامل

The Application of Speech Synthesis and Speech Recognition Techniques in Dialectal Studies

Speech analysis techniques open new perspectives in the processing of dialectal oral data. Speech synthesis can be useful to create or recreate voices of speakers for extinct languages, to re-edit dialectal material using new technologies or to reconstruct utterances of informants that only were registered in notebooks. Speech recognition, applied to sound dialectal sequences, can make easier a...

متن کامل

Dialectal Chinese Speech Recognition : Final Report

†Richard Sproat, University of Illinois (Thomas) Fang Zheng, Tsinghua University Liang Gu, IBM Jing Li, Tsinghua University Yanli Zheng, University of Illinois Yi Su, Johns Hopkins University Haolang Zhou, Johns Hopkins University Philip Bramsen, MIT David Kirsch, Lehigh University Izhak Shafran, Johns Hopkins University Stavros Tsakalidis, Johns Hopkins University Rebecca Starr, Stanford Unive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006